Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin

Jaime A. Davidson, MD, FACP, MACE
Clinical Professor of Medicine
Division of Endocrinology
University of Texas Southwestern Medical Center
Dallas, TX

Anne Peters, MD, FACP, CDE
Director, Clinical Diabetes Program
Professor, Keck School of Medicine
University of Southern California

T2DM and Need for Insulin

UKPDS: at 6 years, more than 50% of patients need insulin to reach target (FPG ≤6.0 mmol/L)

When To Start Insulin in T2DM

- When combination oral/injectable agents become inadequate
- Unacceptable side effects of other agents
- Patient with advanced hepatic or renal disease
- Special circumstances (eg, steroids, infection, pregnancy)
- Patient with hyperglycemia in the hospital
- “Severely” uncontrolled diabetes*

*Defined as FPG >250 mg/dL, random glucose >300 mg/dL, A1C >10%, ketonuria, or symptomatic (polyuria, polydipsia, and weight loss) by ADA 2009 Consensus Statement.

After glucose is controlled, oral agents can be added and insulin withdrawn if preferred.

FDA-approved Insulins for Subcutaneous Injection

When To Start Insulin in T2DM

- When combination oral/injectable agents become inadequate
- Unacceptable side effects of other agents
- Patient with advanced hepatic or renal disease
- Special circumstances (eg, steroids, infection, pregnancy)
- Patient with hyperglycemia in the hospital
- “Severely” uncontrolled diabetes*

*Defined as FPG >250 mg/dL, random glucose >300 mg/dL, A1C >10%, ketonuria, or symptomatic (polyuria, polydipsia, and weight loss) by ADA 2009 Consensus Statement.

After glucose is controlled, oral agents can be added and insulin withdrawn if preferred.

Insulin Pharmacokinetics

Rypins S, J Fam Pract. 2007;56(suppl 1):S1-S12.
Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin

Insulin Therapy in T2DM

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Basal Insulin only</th>
<th>1 mealtime insulin(a)</th>
<th>2 mealtime insulin(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: (a) Includes an analog or a new insulin. (b) Includes a full dose of intermediate-acting insulin included with a short-acting insulin. (c) Lipids, adipose, or glucagon peak acting medication. (d) 75%/25% or 50%/50% NPH/regular mix, or 75%/25% regular mix.

Physiologic Insulin Secretion

- **Basal**
- **Prandial**

- **Breakfast**
- **Lunch**
- **Dinner**

Basal Only Insulin Therapy

- Long (glargine, detemir)

Treat-to-Target Trial

- **Change of FPG over 24 Weeks**
 - Glargine: 117, 130 mg/dL

- **Change of A1C over 24 Weeks**

- **Hypothetical Barriers to Insulin Use**

 Patient Barriers
 - Fear of injections
 - Fear of hypoglycemia
 - Fear of weight gain
 - Insulin need = "severe diabetes"

 Solutions
 - Improved comfort & convenience
 - Severe hypoglycemia rare
 - Weight gain seen with most Rx
 - Glucose lowering is the KEY

 Provider Barriers
 - Insulin is athropgenic
 - Concerns over starting, and follow-up of insulin
 - Complexity of use, adjustments

 Solutions
 - NOI – DIGAMI, UKPDS, DCCT
 - Improved devices, insulin – use of patient self-management education
 - Simplify regimens, dosing
Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin

Patient- vs Physician-adjusted Basal Insulin

<table>
<thead>
<tr>
<th>A1C (%)</th>
<th>Baseline</th>
<th>24 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-adjusted</td>
<td>8.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Physician-adjusted</td>
<td>8.9</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Incidence of Hypoglycemia

<table>
<thead>
<tr>
<th>Hypoglycemia</th>
<th>Patient-adjusted</th>
<th>Physician-adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>2.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>29.7</td>
<td>30.5</td>
</tr>
<tr>
<td>Nocturnal</td>
<td>41</td>
<td>32</td>
</tr>
</tbody>
</table>

Patients can be safely instructed to adjust their insulin dose. (Davies M, et al. Diabetes Care. 2005;28:1282-1288.)

Premixed (Biphasic) Insulin Analogues

- Premixed insulins:
 - 75% insulin lispro protamine suspension/25% insulin lispro injection
 - 50% insulin lispro protamine suspension/50% insulin lispro injection
 - 70% insulin aspart protamine suspension/30% insulin aspart injection
 - 70% human insulin isophane suspension/30% human insulin injection
 - 70% NPH, human insulin isophane suspension/30% regular, human insulin injection

- Premixed insulin may be appropriate:
 - When basal/bolus cannot be used
 - For those with regular lifestyles who eat similar amounts at similar times each day (similar total calories and similar content for carbohydrate/fat/protein)
 - Those who wish only 2 injections/day

The INITIATE Trial: A Comparison of Basal Insulin and Biphasic Insulin Analog Therapy

- N: 233 patients with T2DM
- A1C >8% (insulin-naive)
- OAD failures on MET ≥1000 mg/dL
- Target FPG: 80-110 mg/dL

The 1-2-3 Study: Dosing of Biphasic Insulin

- Phase 1: 68 subjects
 - Twice Daily
 - 28 completed
 - A1C ≤6.5%
 - Pre-dinner × 16 wks
 - Start with 12 U at dinner
 - Add 3 U at bedtime if FPG >110

- Phase 2: 25 subjects
 - Thrice Daily
 - 25 completed
 - A1C ≤6.5%
 - Pre-breakfast & dinner × 16 wks
 - Add 6 U at breakfast if FPG >110

- Phase 3: 100 subjects
 - Daily
 - 21 completed
 - If A1C >6.5%, go to thrice daily

The INITIATE Trial: Biphasic Insulin Analog Therapy Resulted in Greater Reductions in A1C than Basal Insulin Analog Therapy

<table>
<thead>
<tr>
<th>A1C (%)</th>
<th>Baseline</th>
<th>20 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biphasic insulin aspart twice daily</td>
<td>9.7</td>
<td>5.8</td>
</tr>
<tr>
<td>Insulin glargine once daily</td>
<td>5.9</td>
<td>7.4</td>
</tr>
</tbody>
</table>

When Is Basal Alone Not Enough?

- When A1C values are still not at target AND...
 - Basal insulin dose titrated to 0.4-0.6 units/kg/day
 - Fasting BG levels at or approaching target
 - Post-prandial BG values remain above target

How to Intensify Using the Basal Plus Approach

- Choose the "target" meal to initiate prandial coverage:
 - Breakfast or the largest meal of the day
- Start 4-6 units of a rapid-acting insulin analog:
 - 10-15 minutes before the meal
- Adjust prandial insulin dose based on:
 - 2-3 h PPG → target <180 mg/dL
 - Next pre-prandial or HS BG → target <130 mg/dL
- If A1C remains above target add 2nd prandial dose:
 - Usually need about 8-12 units of prandial insulin to cover meal(s)

Requirements of Multi-dose Insulin Therapy

- Requires understanding of insulin action:
 - Basal-bolus therapy – generally 50% basal/50% bolus
- Critical role of patient education:
 - Nutrition education – Carbohydrate counting
 - Understand insulin action times, dosing
 - Emphasize need for frequent monitoring
- Pattern control:
 - Daily insulin adjustments, modification based on BG patterns
 - Correlation factor – what does an extra unit do for me?
 - Impact of exercise

Simple Algorithm for Basal-bolus Approach

<table>
<thead>
<tr>
<th>Insulin Glargine Adjustments: Both Groups</th>
<th>Insulin Glulisine Adjustments: Simple Algorithm Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of last 3-day fasting SMBG mg/dL</td>
<td>Adjustment</td>
</tr>
<tr>
<td><180 mg/dL</td>
<td>Increase 6 units</td>
</tr>
<tr>
<td>140-180 mg/dL</td>
<td>Increase 4 units</td>
</tr>
<tr>
<td>120-140 mg/dL</td>
<td>Increase 2 units</td>
</tr>
<tr>
<td>95-120 mg/dL</td>
<td>No change</td>
</tr>
<tr>
<td><95 mg/dL</td>
<td>Decrease by the same number of units as the insulin dose</td>
</tr>
</tbody>
</table>

Mimicking Physiologic Insulin Secretion: Basal-bolus Insulin Therapy

- Endogenous insulin
 - Basal insulin
 - Bolus insulin

Simple vs Complex Algorithm for Basal-bolus Approach

- 273 intent-to-treat patients where randomized to either a simple algorithm or a complex algorithm
- A1C was measured after 24 weeks

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Δ from BL A1C</th>
<th>% reaching A1C <7.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>-1.46</td>
<td>73.2</td>
</tr>
<tr>
<td>Complex</td>
<td>-1.59</td>
<td>69.2</td>
</tr>
</tbody>
</table>

There were no significant differences in A1C reduction or A1C goal attainment found between the two groups

Hypoglycemia Management

- At-risk patients: Ask about symptomatic and asymptomatic hypoglycemia at each encounter
- Personalized treatment glucose 15-20 g
 - After 15 min of treatment, repeat if hypoglycemia continues (per SMBG)
 - When SMBG normal, patient should consume meal or snacks to prevent recurrence

Hypoglycemia unawareness or episode of severe hypoglycemia

- Familiarize treatment regimen
- Insulin-treated patients: set glycemic targets for several weeks to partially reverse hypoglycemia unawareness and reduce recurrence

Low or declining cognition

- Continuously assess cognitive function with increased vigilance for hypoglycemia
Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin

Summary of Comparative Insulin Trials

- Any insulin will lower glucose and A1C; the more injections, the better titration, and the higher the dose, the better the control.
- All insulin use results in weight gain and increases the risk of hypoglycemia.
- Generally, insulin analogs reduce the incidence of hypoglycemia over human insulins but generally do not result in better overall glycemic control.
- Insulin strategies that include prandial dosing (e.g., basal-bolus; premixed) will generally reduce A1C to a greater extent than basal-only, but at the expense of more weight gain, hypoglycemia.

Strategies for Insulin Selection

- Convenience (once daily vs twice or three times daily)
- Proven safety:
 - Analogs – ORIGIN study showed low hypoglycemic risk, no adverse CV effects, and no cancer risk
 - NPH – a little more hypoglycemic risk than analogs
- Cost:
 - NPH $;
 - Analogs $$$$$
- Insurance coverage:
 - Analogs – coverage varies and may require prior authorization

Potential Non-insulin Therapies To be Combined with Insulin

- Metformin
- TZDs
- Pramlintide
- DPP-4 inhibitors
- SGLT2 inhibitors
- GLP-1 receptor agonists

Metformin Plus Insulin: A1C Reduction

- Table showing percentage reduction in A1C with different combinations of Metformin and Insulin.
Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin
Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin

SGLT2 Inhibitors Plus Insulin

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>Background Therapy</th>
<th>Intervention</th>
<th>Δ From BL</th>
<th>A1C (%)</th>
<th>Δ From BL</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devarahanti D et al</td>
<td>28 days</td>
<td>Insulin + 1 OAD</td>
<td>100 mg canagliflozin QD</td>
<td>-0.73</td>
<td>-0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 mg canagliflozin BID</td>
<td>-0.92</td>
<td>-1.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not considered statistically significant.

GLP-1 RA Plus Insulin

Promotes satiety and reduces appetite

β cells: Enhance glucose-dependent insulin secretion

Liver: ↓ glucagon reduces hepatic glucose output

Stomach: Helps regulate gastric emptying

GLP-1 RA + Insulin Options

- Dist, exercise, weight loss, oral agents
 - + GLP-1 RA
 - + Insulin

- Dist, exercise, weight loss, oral agents
 - + Insulin
 - + GLP-1 RA

Potential Benefits of Combining GLP-1-based Therapies with Insulin

GLP-1-based therapies

- Insulin secretion (glucose-dependent)
- β cell preservation
- Glucagon secretion (glucose-dependent)
- Risk of hypoglycemia
- Body weight
- PPG levels
- Energy intake
- Safety
- GI tract motility

Basal insulin therapy

- Insulin levels (insulin supplementation)
- β cell rest
- Corrects glucotoxicity

- Relaxes endogenous prandial insulin response
- Moderate risk of hypoglycemia
- Weight gain
- FPG levels

Insulin/GLP-1 Combos

- Dist, exercise, weight loss, oral agents
 - + GLP-1 RA + Insulin

Exenatide Added to Basal Glargine

- Screening
- Randomization
- Study End

- 5 μg EXE
- 10 μg EXE

- Insulin Glargine + OADs
- Insulin Glargine + OADs + PLB BID
Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin

Exenatide Added to Basal Glargine

Exenatide Added to Basal Glargine: Side Effects

MET + LIRA + Insulin Detemir

Liraglutide with Basal Insulin Over 38 Weeks

Insulin Degludec + Liraglutide Combination

Inclusion criteria:
- T2DM
- Insulin-naïve, treated with metformin + pioglitazone
- A1C 10-10.9%
- BMI 25-40 kg/m²
- Age 18-80 years

Patients with T2DM (n=163)

Mean Fasting PG	Dose Change
<72 | Med-Low
72-100 | Low
>100 | High

*Patient algorithm: Eligible for and Eligible for DM2 or T2DM, age 40-75 years. Base J. Presented at the 75th American Diabetes Association Scientific Sessions, June 25, 2019, Chicago, IL.
Effective Use of Insulin in the Primary Care Practice: Insulin Therapy Initiation, Intensification, and the Utilization of Non-insulin Therapies with Insulin

IDeg + LIRA Combination: Glycemia

<table>
<thead>
<tr>
<th>A1C Over Time</th>
<th>FPG Over Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (weeks)</td>
<td>Time (weeks)</td>
</tr>
<tr>
<td>A1C (%)</td>
<td>FPG (mg/dL)</td>
</tr>
<tr>
<td>LIRA (n=414)</td>
<td>LIRA (n=414)</td>
</tr>
<tr>
<td>8.5</td>
<td>153</td>
</tr>
<tr>
<td>8.0</td>
<td>135</td>
</tr>
<tr>
<td>7.5</td>
<td>117</td>
</tr>
<tr>
<td>7.0</td>
<td>99</td>
</tr>
<tr>
<td>6.5</td>
<td>82</td>
</tr>
<tr>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>∆A1C</td>
<td>∆FPG</td>
</tr>
<tr>
<td>-1.28%</td>
<td>32 mg/dL</td>
</tr>
<tr>
<td>EOT</td>
<td>131 mg/dL</td>
</tr>
</tbody>
</table>

Mean values (±SEM) based on FAS and LOCF-imputed data.

ADA/EASD A1C target <7.0%. AACE A1C target ≤6.5%.

IDeg + LIRA Combination: Body Weight and Hypoglycemia

<table>
<thead>
<tr>
<th>Change in Body Weight Over Time</th>
<th>Confirmed Hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (weeks)</td>
<td>Time (weeks)</td>
</tr>
<tr>
<td>Change in Body Weight Over Time (kg)</td>
<td>LIRA (n=414)</td>
</tr>
<tr>
<td>LIRA (n=414)</td>
<td>0.0</td>
</tr>
<tr>
<td>IDeg (n=413)</td>
<td>-2.44 kg P=.0001</td>
</tr>
<tr>
<td>IDeg+LIRA (n=833)</td>
<td>-2.22 kg P=.0001</td>
</tr>
<tr>
<td>Mean values based on SAS.</td>
<td>Rate ratio: 0.68 P=.002</td>
</tr>
<tr>
<td>Estimated rate ratio and P-values are from a negative binomial model.</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- In patients with T2DM, treating the multiple defects (insulin resistance plus insulin deficiency) can improve A1C levels
- Options include adding metformin, DPP-4 inhibitors, GLP-1 RAs, pramlintide, TZDs and potentially SGLT2 inhibitors
- Must adjust the dose of insulin in order to avoid hypoglycemia when adding some of the non-insulin agents