Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

Eliot A. Brinton, MD, FAHA, FNLA
President, Utah Lipid Center
Salt Lake City, Utah
Past President, American Board of Clinical Lipidology

Educational Objectives

At the conclusion of this activity, participants should be able to:
- Evaluate the extent of residual CVD risk to which high-risk patients are exposed
- Analyze the potential strengths and weaknesses of new approaches to reduce CVD risk
- Incorporate insights about new LDL-lowering agents in combination with statin therapy into more comprehensive clinical treatment strategies
- Discuss strategies to improve the knowledge, skills, or performance of the healthcare team

Elevated LDL-C Cardiovascular Pathobiology

Support for LDL Causality in ASCVD

- Four Compelling Lines of Evidence:
 - Observational data
 - Interventional data
 - Genetic studies
 - Experimental data

Impact of Hypercholesterolemia Mutation Status on CAD According to LDL-C Level

ASCVD = atherosclerotic cardiovascular disease

ARIC Study: Relationship of LDL-C to CHD

Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

Unadjusted Rates of CHD Death or Nonfatal MI per 1000 Person-years and Underlying Observed Event Numbers in Men and Women with FH

LDL-C Reduction: Cardiovascular Benefits

Mean Attained LDL-C on Statin Therapy and Risks of Secondary Cardiovascular Events

Genetically and Pharmacologically Mediated Reduction of LDL-C Lowers Risk of CHD

Patients who Achieve Very Low LDL-C Levels have Lower Risk For MACE

LDL-C and Atherosclerotic Cardiovascular Disease

- Cumulative LDL arterial burden is a central determinant for the initiation and progression of atherosclerotic cardiovascular disease
- The lower the LDL-C level attained by agents that primarily target LDL receptors, the greater the clinical benefit
- Both relative and absolute risk reduction relate to the magnitude of LDL-C reduction
- Lowering LDL-C in individuals at high cardiovascular risk earlier rather than later appears advisable, especially in those with familial hypercholesterolemia
Adverse Impacts of Severe ASCVD
Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

Statin Therapy: The Gold Standard for LDL-C Reduction

CHD Events Are Reduced Proportional to LDL-C Lowering with Statins

*Equation: CHD Events = 0.1629 ∙ LDL_C - 4.6776

R² = 0.9029

P < 0.0001

<table>
<thead>
<tr>
<th>LDL Cholesterol (mg/dL)</th>
<th>CHD Events (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5%</td>
</tr>
<tr>
<td>150</td>
<td>10%</td>
</tr>
<tr>
<td>200</td>
<td>15%</td>
</tr>
<tr>
<td>250</td>
<td>20%</td>
</tr>
<tr>
<td>300</td>
<td>25%</td>
</tr>
</tbody>
</table>

ASCVD Statin Benefit Groups

- High-intensity Statin Therapy
- Moderate-intensity Statin Therapy
- Low-intensity Statin Therapy

2013 ACC/AHA Guideline: Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults

- Low-intensity statins are recommended only in patients with history of or at risk for adverse drug effects
- Moderate-to-high-intensity statins recommended for patients with clinical ASCVD and those with diabetes
- High-intensity statins recommended for patients with LDL-C >190 mg/dL
- Did not find evidence to support LDL-C thresholds or targets of therapy. No evidence was found that titration or combination drug therapy to achieve specific LDL-C or non-HDL-C levels or percent reduction improved ASCVD outcomes. No dose titration recommended.

- Monitor LDL-C to assess compliance and response to therapy

High, Moderate, and Low-intensity Statin Therapy Used in Clinical Trials

<table>
<thead>
<tr>
<th>Statin</th>
<th>Dose (mg)</th>
<th>Clinical Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>10* (20**)</td>
<td>PROVE-IT-A2Z</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>10* (20**)</td>
<td>TNT (S20)</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>10**</td>
<td>TNT (A80)</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>40* (80**)</td>
<td>ACC/AHA Guidelines (LIPID-P)</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>40*</td>
<td>ASCVD-P</td>
</tr>
</tbody>
</table>
Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

NLA Recommendations: Initiate Therapy Based on Risk and Lipid Levels and Treat to Specific Goal

| Risk Category | Criteria | Initiating Therapy | Treatment Goal
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>≤ 20% 5-year risk</td>
<td>>130 mg/dL (3.4 mmol/L)</td>
<td><100 mg/dL (2.6 mmol/L)</td>
</tr>
<tr>
<td>Moderate</td>
<td>>20% 5-year risk</td>
<td>>190 mg/dL (5.0 mmol/L)</td>
<td><100 mg/dL (2.6 mmol/L)</td>
</tr>
<tr>
<td>High</td>
<td>>20% 5-year risk</td>
<td>>250 mg/dL (6.5 mmol/L)</td>
<td><<130 mg/dL (3.4 mmol/L)</td>
</tr>
<tr>
<td>Very High</td>
<td>>20% 5-year risk</td>
<td>>>300 mg/dL (>8.0 mmol/L)</td>
<td><<130 mg/dL (3.4 mmol/L)</td>
</tr>
</tbody>
</table>

*Consider other risk factors.
*Complete cessation of high-intensity statin in patients with ASCVD or DM regardless of baseline lipid levels.

Residual CHD Risk Despite Statin Therapy

Major Statin Trials: Despite Benefit, Substantial Residual CV Risk Remains

<table>
<thead>
<tr>
<th>LDL-C (mg/dL)</th>
<th>Placebo</th>
<th>Statin</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C Change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>15.9</td>
<td>11.8</td>
</tr>
<tr>
<td>Secondary</td>
<td>16.0</td>
<td>12.4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change in LDL-C on Statin and MACE Event Rates

Statin-Treated CHD Patients Achieving LDL-C <100 mg/dL and <70 mg/dL

Cumulative Incidence for Recurrent MI, CHD Events, and All-Cause Mortality

Statin Intolerance and Risk of Coronary Events

Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

Disease Trajectories and CVD Risk Reduction

Non-Statin LDL-Lowering Therapies: Ezetimibe

Ezetimibe: IMPROVE IT Trial Design

- Patients stabilized post-ACS ≤10 days
- LDL-C ≤125 mg/dL (or ≤100 mg/dL if prior statin)
- ASA + Standard Medical Therapy
- Simvastatin 40 mg* + Ezetimibe 10/40 mg*
- Follow-up visit day 30, every 4 months
- Duration: Minimum 2.5 year follow-up (2520 events)

IMPROVE IT Trial: Effect on LDL-C

- Ezetimibe (EZ) + Simvastatin vs Simvastatin Alone
- Study drug is administered once daily in the evening

IMPROVE IT Trial: Ezetimibe + Simvastatin vs Simvastatin Alone

- Reduction in Rate of Major Vascular Events (%)
 - Reduction in LDL Cholesterol: mmol/L (mg/dL)
 - 2.0 (77.2)
 - 1.5 (57.9)
 - 1.0 (38.6)
 - 0.5 (19.3)

IMPROVE-IT: Ezetimibe vs Statin Benefit – Change in LDL-C vs Clinical Benefit

- Ezetimibe/Simvastatin – 32.7%
- Simvastatin – 34.7%
- NNT = 50
- HR 0.936 CI (0.887, 0.988)

Non-Statin LDL-Lowering Therapies: PCSK9 Inhibitors

PCSK9 Physiology: Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9)

- Chaperones LDL-R to destruction → ↑ circulating LDL-C
- Loss-of-fxn genetic variants → ↓ LDL-R → ↓ LDL-C & ↓ risk of MI

PCSK9 Loss-of-Function Mutations: Lower LDL-C Levels and Reduced CHD Rates

- Wild-type PCSK9 degrades LDL receptors.1,2
- Loss-of-function (LOF) mutations increase hepatic LDL receptor expression, reducing LDL-C levels by 15%-40%.2,3
- CHD incidence was reduced 47%-88% in PCSK9 loss-of-function mutation carriers compared with normal individuals.3

Alirocumab: ODYSSEY Long-Term Stable LDL-C Reduction

- Cox model analysis: HR = 0.52 (95% CI 0.31 to 0.90)
- Nominal P-value = 0.02

Alirocumab: ODYSSEY Long-Term MACE Rate by Average LDL-C During Treatment Period

- Based on primary endpoint for the ODYSSEY Long-Term trial, including CHD death, non-fatal MI, non-fatal stroke, non-fatal ischemic stroke, and unstable angina requiring hospitalization for coronary revascularization.

This analysis was based on pooled data from the Phase 3 trials of Alirocumab: ODYSSEY ABLE and ODYSSEY LITMUS.
Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

Evolocumab: The GLAGOV Trial

Progression of Coronary Atherosclerosis on Statin +/- Evolocumab

- **Nicholls SJ et al.**
- **JAMA.** 2016;316:2373-2384.

Effect of Evolocumab on Progression of Coronary Artery Disease in Statin-treated Patients

The GLAGOV Randomized Double-Blind Clinical Trial

- **Nicholls SJ et al.**
- **JAMA.** 2016;316:2373-2384.

Randomized Open-Label Extension of OSLER-1 & OSLER-2 (RDBCTs): Evolocumab vs Placebo on MACE

Open label study of 4465 pts randomized to evolocumab 140 mg SC Q2W or 420 mg SC QM + standard of care (SOC) for 48 wks

- **CV Events**
 - Death
 - MI
 - UA requiring hospitalization
 - CVA
 - TIA
 - Hosp w CHF

CV Events

Evolocumab: FOURIER Trial Design

27,664 high-risk, stable patients with established CV disease (prior MI, prior stroke, or symptomatic PAD)

Screening, Lipid Stabilization, and Placebo Run-in

High or moderate intensity statin therapy (± ezetimibe)

27,564 high-risk, stable patients with established CV disease (prior MI, prior stroke, or symptomatic PAD)

Randomized Open-Label Extension of OSLER-1 & OSLER-2 (RDBCTs): Evolocumab vs Placebo on MACE

Follow-up 12 wks (over 2.2 y median f/u)

Evolocumab: FOURIER Trial Design

- LDL-C ≥ 100 mg/dL or non-HDL-C ≥ 110 mg/dL
- Follow-up Q 12 wks (over 2.2 y median f/u)

Evolocumab: FOURIER–LDL Cholesterol

- Placebo
- Evolocumab

55% mean reduction (95% CI 30.6-68.4, P=0.00001)

Absolute reduction: 54 mg/dL (95% CI 35.5-73.5)

Evolocumab: FOURIER– Primary Efficacy Endpoint

- Hazard ratio 0.85 (95% CI 0.79-0.92) P=0.0001
Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

Evolocumab: FOURIER—Landmark Analysis

PCSK9 Inhibition: LDL-C Lowering Efficacy in Long-term Studies

<table>
<thead>
<tr>
<th>Patients</th>
<th>% LDL-C ≤ 35% wks</th>
<th>% LDL-C ≤ 40% wks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolocumab 140 mg SC Q2W or 420 mg SC QM (baseline LDL-C = 120 mg/dL)</td>
<td>-61% (P<0.001)</td>
<td>-61% (P<0.001)</td>
</tr>
<tr>
<td>Alirocumab 150 mg SC Q2W (baseline LDL-C = 123 mg/dL)</td>
<td>-62% (P<0.001)</td>
<td>-56% (P<0.001)</td>
</tr>
</tbody>
</table>

- Osler1: Open label study of 4485 pts randomized to evolocumab 140 mg SC Q2W or 420 mg SC QM + standard of care (SOC) vs SOC for 48 weeks
- Odyssey Long Term2: Blinded study of 2341 high risk pts on max-tolerated statin with LDL-C > 70 randomized to alirocumab 150 mg or placebo SC Q2W for 78 wks

*Proportion of patients with LDL-C = 70 mg/dL = 74%
ƚProportion of patients with LDL-C = 70 mg/dL = 79%

2016 ESC/EAS Guidelines on Dyslipidemias: Pharmacological Treatment of Hypercholesterolemia

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescribe statin to the highest recommended dose or highest tolerated dose to reach the goal</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>In the case of statin intolerance, ezetimibe or bile acid sequestrants, or these combined, should be considered</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>If the goal is not reached, statin combination with a cholesterol absorption inhibitor should be considered</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>If the goal is not reached, statin combination with a bile acid sequestrant may be considered</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>In patients at very high risk, with persistent high LDL-C despite treatment with maximal tolerated statin dose, in combination with ezetimibe or in patients with statin intolerance, a PCSK9 inhibitor may be considered</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

Class of Recommendation: 1 = strong 2 = moderate 3 = weak

Level of Evidence: A = strong B = moderate C = limited

2016 ACC/AHA Expert Consensus Decision Pathway

Determining When to Add Nonstatin Therapy
Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

LDL-C Response Variability to High-Intensity Statin Therapy and Implications for the Allocation of PCSK9 Inhibitors

The Gap Between What We Know and What We Do

“Drugs don’t work in patients who don’t take them.”

– C. Everett Koop
Former US Surgeon General

Barriers to Medication Adherence

Benefits of Shared Decision-making

- Learn about their health
- Recognize a decision is necessary
- Understand pros and cons
- Have the information and tools needed to evaluate
- Are better prepared to talk
- Collaborate with their healthcare team
- Are more likely to follow through with the decision
- Builds a lasting and trusting relationship

Simulation of Lipid-Lowering Therapy Intensification in ASCVD

- Large gaps exist between recommendations and current practice
- Model assumes no lipid lowering therapy (LLT) intolerance and full adherence
- Intensification of oral LLT could achieve an LDL-C level of less than 70mg/dL in most patients, with only a modest percentage requiring a PCSK9 inhibitor.
Adverse Impacts of Severe ASCVD

Is PCSK9 Inhibition the Key to Improving Patient Outcomes?

- In a contemporary US population with ASCVD, only 53.2% received a statin at baseline
- Only 15.3% received a high-intensity statin
- This treatment 25.2% achieving LDL-C levels of less than 70mg/dL

Interventions to Improve Adherence

<table>
<thead>
<tr>
<th>S</th>
<th>S</th>
<th>T</th>
<th>P</th>
<th>L</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study the regimen</td>
<td>Advisor during frequent, small change</td>
<td>Tailored education, patient-centered care, self-care, and peers</td>
<td>Patient monitor, medication management</td>
<td>Provider, pharmaceutical, patient, provider, patient</td>
<td>Education, health literacy, provider, provider, provider</td>
</tr>
</tbody>
</table>

Conclusions

- People with lifetime low LDL-C are at low risk for ASCVD; those with high LDL-C have increased risk
- Despite significant reduction in LDL-C and CVD risk associated with statin use, considerable residual risk persists.
- High-risk patients remain untreated to LDL goals for many reasons, including statin intolerance
- The addition of ezetimibe to statins yields incremental but modest improvements in CVD risk.
- PCSK9 inhibitors represent the most promising new class of LDL-C lowering therapy and ongoing outcomes trials will help to determine the clinical utility of these agents.
- Lipid-lowering therapies improve outcomes of patients with ASCVD, but to be effective, they must be taken as prescribed.

Thank you!