EFFECTIVE ASTHMA MANAGEMENT IN PRIMARY CARE
Severity Assessment, Guidelines, and New Therapeutic Options

Bradley E. Chipps, MD, FAAP, FAAAAI, FAAAAI, FCCP
President-Elect, American College of Allergy, Asthma & Immunology
Medical Director, Capital Allergy & Respiratory Disease Center
Sacramento, CA

Educational Objectives
- Review methods used to assess asthma severity and control
- Review current guidelines for treating asthma
- Discuss phenotypes and endotypes in asthma and the use of biomarkers in clinical practice
- Examine the role of existing and potential future biologic agents in treating severe, refractory patients

Methods to Assess Severity and Control

Definition of Asthma
A chronic inflammatory disease of the airways with the following clinical features:
- Episodic and/or chronic symptoms of airway obstruction
- Bronchial hyperresponsiveness to triggers
- Evidence of at least partial reversibility of the airway obstruction
- Alternative diagnoses are excluded

Clinical Evaluation of Asthma
- History and physical examination
- Validated questionnaires to assess severity
- Pulmonary function (spirometry)
- Biomarkers
 - Blood eosinophil count
 - Exhaled nitric oxide
- Allergy testing

Asthma Control
Current Impairment and Future Risk

Current impairment
- Symptoms >2 day/week
- Rescue med >2 days/week
- Nighttime awakening >1 time/week
- FEV1 or PEF <80% predicted
- Decrease in normal activities

Future risk
- At least 2 exacerbations/year requiring oral corticosteroids (OCS)
- Need for urgent medical care, including ED visits or hospitalization
Score

- This test can help a parent determine if a child's breathing problems are not under control and when medical advice should be sought. Designed for children who:
 - Are under 5 years of age
 - Have a history of 2 or more episodes of wheezing, shortness of breath, or cough lasting more than 24 hours, **AND**
 - Have been previously prescribed bronchodilator medicines, also known as quick-relief medications, for respiratory problems **OR** have been diagnosed with asthma

- **Score 80**: Child's breathing problems may not be under control.
- **Score 90**: Child's breathing problems seem to be under control.

Assessment of Asthma Control: Asthma Control Test (C-ACT)

A longitudinal study of patients with asthma reported that C-ACT is reliable, valid, and responsive to changes in asthma control over time. In the clinical setting, the ACT should be a useful tool to aid physicians in identifying patients with uncontrolled asthma, facilitating their ability to follow patient progress with treatment.

Are Most Patients With Asthma Well-Controlled?

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size</th>
<th>Percent with uncontrolled asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENOR¹</td>
<td>1,539</td>
<td>69.8</td>
</tr>
<tr>
<td>AIM²</td>
<td>2,500</td>
<td>70.8</td>
</tr>
<tr>
<td>CHOICE³</td>
<td>310</td>
<td>85.7</td>
</tr>
</tbody>
</table>

Risk of Future Severe Asthma Event in Patients with Past Severe Asthma Event

<table>
<thead>
<tr>
<th>Severe Asthma Event</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of severe exacerbation with history of recent exacerbation</td>
<td>6.33</td>
</tr>
<tr>
<td>Risk of OCS treatment with history of recent OCS treatment</td>
<td>3.91</td>
</tr>
</tbody>
</table>

Important Factors Which Contribute to Poor Asthma Control

- Rhinitis and sinusitis
- Gastroesophageal reflux disease
- Low vitamin D
- Obesity
- Obstructive sleep apnea
- Persistent lower respiratory tract infection
- Psychologic (anxiety, depression)
- Smoking
- Unabated environmental trigger
- Poor response to therapy

Spirometry: An Important Test for Assessing Asthma

- Low FEV1 is linked to lower quality of life and higher risk of exacerbations
- May not be able to accurately assess level of pulmonary function from symptoms and examination
- May be mastered by physician and office assistant
- Should be assessed at least once-yearly

Global Initiative for Asthma. Global strategy for asthma management and prevention, 2017.
Available at: http://ginasthma.org/.

Pulmonary Function Test

Biomarkers and Asthma Pathogenesis

- Biomarkers allow physicians to determine the primary pathogenetic pathway in a given patient
 - Th2 (Type 2) pathway
 - Presence of interleukins 4, 5, and 13
 - Elevated blood and sputum eosinophils
 - Present in 70% of asthma
 - Non-Th2 pathways
 - Inflammatory cells and cytokines poorly-characterized

Epithelial Cells Play a Critical Role, as Well

Blood Eosinophils

- Important identifier of Th2 (Type 2) pathophysiology
- Most widely accepted cut-off value separating "eosinophilic" and "non-eosinophilic" = 300/mcl
- Eosinophil count proportional to risk of asthma exacerbation
- May vary significantly over time
- Advantage = inexpensive and widely available

Blood Eosinophil Counts and Risk of Asthma Exacerbations

Claims database analysis examining eosinophil count and exacerbations requiring systemic CS or ER/hospital care

Exhaled Nitric Oxide (FeNO)

- Help identify eosinophilic asthma phenotype
- Diagnose steroid-responsive airway inflammation
- Help support asthma diagnosis and etiology of respiratory symptoms
- Disadvantage = requires specialized equipment

Exhaled Nitric Oxide

Important Ways to Divide Asthma Into Subtypes

What is a phenotype?

The outward manifestation of an individual’s genetics which is the result of an interaction with the environment and which may change over time in response to new environments

What is an endotype?

A phenotype of a disease state which has been well-characterized with respect to pathophysiologic mechanisms

Separation of Asthma into Clinical Phenotypes

- In past, asthma was characterized by the presence or absence of allergy without consideration of other characteristics
- Recent studies - unbiased hierarchical cluster analysis
 - Clinical characteristics (gender, age of onset, severity)
 - Physiology (lung function, airway hyperresponsiveness)
 - Triggers (allergens)
 - Sputum inflammatory cells (eosinophils, neutrophils)
- Sum total of characteristics are segregated into groups, with no single feature playing a predominant role in the classification
EFFECTIVE ASTHMA MANAGEMENT IN PRIMARY CARE

Severity Assessment, Guidelines, and New Therapeutic Options

Tree Analysis

[Tree Analysis Image]

Demographics and Clinical Characteristics of the SARP subjects

[Cluster Analysis Image]

Common Endotypes of Severe Asthma

<table>
<thead>
<tr>
<th>Endotype</th>
<th>Clinical/physiologic characteristics</th>
<th>Inflammatory phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early-onset allergic</td>
<td>Frequent history of atopic dermatitis, usually have allergic rhinitis</td>
<td>Eosinophilic</td>
</tr>
<tr>
<td>Late-onset, minimally allergic</td>
<td>Frequent chronic rhinosinusitis/polyps; more severe obstruction; may have NSAID intolerance</td>
<td>Highly eosinophilic</td>
</tr>
<tr>
<td>Late-onset obese</td>
<td>Nonallergic, often with pulmonary restriction</td>
<td>Non-eosinophilic</td>
</tr>
<tr>
<td>Late-onset nonallergic</td>
<td>May have significant respiratory tract infection or GERD</td>
<td>Non-eosinophilic</td>
</tr>
</tbody>
</table>

Current Guidelines for Treating Asthma

[GINA: Step-Guided Treatment Image]

What Percent of Patients are Controlled with ICS and ICS/LABA?

<table>
<thead>
<tr>
<th>Stratum*</th>
<th>N</th>
<th>Well-controlled (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - FP</td>
<td>544</td>
<td>65</td>
</tr>
<tr>
<td>1 - FP-S</td>
<td>539</td>
<td>71</td>
</tr>
<tr>
<td>2 - FP</td>
<td>577</td>
<td>62</td>
</tr>
<tr>
<td>2 - FP-S</td>
<td>583</td>
<td>69</td>
</tr>
<tr>
<td>3 - FP</td>
<td>587</td>
<td>33</td>
</tr>
<tr>
<td>3 - FP-S</td>
<td>568</td>
<td>52</td>
</tr>
</tbody>
</table>

*Stratum 1 = no ICS
Stratum 2 = < 500 mcg ICS
Stratum 3 = 500-1000 mcg ICS

*Stratum 1 = no ICS
Stratum 2 = < 500 mcg ICS
Stratum 3 = 500-1000 mcg ICS
What is Effective for Asthma Beyond ICS/LABA?

- Leukotriene modifiers
 - Montelukast = leukotriene receptor antagonist
 - Zileuton = 5-lipoxygenase inhibitor
- Neither agent shown to have benefit added to ICS/LABA in DBPC trials, although may be helpful in patients with aspirin-exacerbated respiratory disease
- Long-acting muscarinic antagonists
 - Effective in conjunction with ICS (in place of LABA) or as 3rd-line therapy in addition to ICS/LABA

Effects of Tiotropium on FEV1 and Asthma Exacerbations

Biologic Agents in Asthma

- Unlike conventional inhaled and oral therapies for asthma, biologic agents are targeted at specific molecules responsible for asthma pathogenesis
- These biologic agents are typically formulated as monoclonal antibodies which are administered systemically

Existing and Future Biologic Agents in Treating Severe, Refractory Asthma

Biologic Agents Currently Available for Severe Asthma

<table>
<thead>
<tr>
<th>Endotype</th>
<th>Main target</th>
<th>Class of agents</th>
<th>Specific compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic</td>
<td>IgE</td>
<td>Anti-IgE</td>
<td>Omalizumab</td>
</tr>
<tr>
<td></td>
<td>Eosinophils</td>
<td>Anti-IL5</td>
<td>Mepolizumab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reslizumab</td>
</tr>
<tr>
<td>Late-onset with eosinophilia</td>
<td>Eosinophils</td>
<td>Anti-IL5</td>
<td>Mepolizumab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reslizumab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benralizumab*</td>
</tr>
</tbody>
</table>

*Submitted to FDA

Anti-IgE Antibody Therapy (Omalizumab) for Severe Allergic Asthma

- Humanized (95%) mAb against IgE – indicated in perennial allergic asthma
- Significant improvement of outcomes in patients receiving 3 controllers:
 - 25% less exacerbations in patient using maximal inhaled therapy
 - Improved asthma symptoms and AQLQ
 - Small improvements in lung function
- Overall response rate 50-60% - why not higher?
 - Absence of active inflammation
 - Insufficient dose of drug in some patients
 - Absence of relevant allergen exposure
 - Mechanisms other than IgE-mediated inflammation, e.g., infection, advanced remodeling

MEDX
MEDICAL EDUCATION EXCHANGE
EFFECTIVE ASTHMA MANAGEMENT IN PRIMARY CARE
Severity Assessment, Guidelines, and New Therapeutic Options

The Targets: IL-5 or Eosinophils (IL-5Rα)

Benralizumab

Mepolizumab Reslizumab

Eosinophil

• Raised levels present in 40% to 60% of asthmatics
• Release toxins that promote airway inflammation in asthmatic patients

IL-5

• Principal eosinophilic regulatory cytokine
• Involved in the maturation, differentiation, survival, and activation of eosinophils

Mepolizumab: The DREAM Study

Benralizumab and Exacerbations

By Eosinophil Status

≥ 200 cells/μL
≥ 300 cells/μL
≥ 400 cells/μL

By Baseline Eosinophil Level

Annual Exacerbation Rate

RR = 24%
P = .362

RR = 30%
P = .131*

RR = –30%
P = .327

RR = 57%
P = .015*

RR = 41%
P = .096*

RR = 43%
P = .049*

RR = –7%
P = .822

RR = 6%
P = .844

RR = 70%
P = .002*

RR = 57%
P = .024*

RR = 36%
P = .173

RR = –9%
P = .781

RR = 22%
P = .284

• In the LEos population, significant improvement was observed for the q2w regimens vs placebo, but not for the q4w regimens

• In the overall population, significant improvement was observed for all dupilumab dose regimens vs placebo

• In the LEos population, significant improvement was observed for the q2w regimens vs placebo, but not for the q4w regimens

Lung Function: % Change in FEV1

Dupilumab (Anti-IL-4/13Ralpha): A New Biologic Agent in Development for Severe Asthma

Tezepelumab (Anti-TSLP): A New Biologic Agent in Development for Severe Asthma

Case Studies

Case #1

- MP is a 45-year-old white male with a 3-year history of asthma, which has been worsening over the past year.
- Also has a 6-year history of chronic nasal congestion and postnasal drip with 2 sinus infections per year.
- Severe wheezing and rhinorrhea after taking ASA and other NSAIDs over the last 3 years.
- Asthma is a daily problem in spite of taking ICS/LABA and LAMA and intranasal corticosteroids for nasal/sinus symptoms.
- He has had 4 episodes of asthma exacerbation, 3 requiring OCS, during the past year.

Physical Examination

- Nose - bilateral nasal polyps
- Pharynx - mucopurulent secretions in posterior pharynx
- Chest - bilateral wheezing and decreased air exchange

Laboratory Values

- **PFT**
 - FVC: 88% predicted
 - FEV1: 62% predicted
 - FEV1/FVC: 0.60
 - 14% bronchodilator response
- FeNO = 62 ppb
- Absolute EOS = 454 cells/ml
- Total serum IgE = 42 IU/ml
- Allergy skin tests = borderline reactions to ragweed and elm tree pollens

Potential Therapies

- Leukotriene modifier, particularly zileuton (5-LO inhibitor)
- ASA desensitization and maintenance therapy
- Anti-IL-5 antibody therapy (mepolizumab or reslizumab)

Effectiveness of Various Medications in AERD

A survey analyzing patient observations of treatment effectiveness in those with AERD showed that aspirin was most beneficial, followed by a leukotriene receptor agonist and a combination of medicines. However, the majority of patients reported that no medication made a difference in symptoms. Despite ongoing medical therapy, the burden of disease remains high in these patients.
EFFECTIVE ASTHMA MANAGEMENT IN PRIMARY CARE

Severity Assessment, Guidelines, and New Therapeutic Options

Long-term Aspirin Therapy

- **Goal** = ASA 650 mg BID
- Reduces nasal congestion, anosmia, recurrent sinusitis
- Similar asthma control with less OCS
- Difficult to maintain long term due to gastritis

Case #2

- LS is a 36-year-old woman with asthma since age 8 years; has been worsening over past 2 years
- Also has had year-round nasal congestion, sneezing, and itchy eyes and nose since childhood with seasonal worsening in the spring and fall seasons for the same length of time
- Had flexural eczema in childhood, and now has frequent skin dryness and erythema over her neck and occasionally around her eyes
- Has been treated with medium-dose ICS/LABA and oral H1 antihistamine for past year but has continued to have some daily symptoms and had 3 asthma exacerbations in the past year requiring OCS
- Her home environment is noteworthy for a pet rabbit

Physical Examination

- Nose – pale, swollen inferior nasal turbinates and watery, clear secretions bilaterally
- Chest examination – clear
- Skin – mild erythema and papulation on her anterior neck

Laboratory Values

- **PFT**
 - FVC: 92% predicted
 - FEV1: 74% predicted
 - FEV1/FVC: 0.66
 - 20% bronchodilator response
- FeNO = 35 ppb
- Absolute EOS = 310 cell/mL
- Total serum IgE = 276 IU/mL
- Allergy skin tests = large reactions to Dermatophagoides pteronyssinus (dust mite) and Alternaria mold; negative to rabbit dander

Potential Therapies

- Leukotriene modifier, particularly montelukast
- LAMA
- Anti-IgE antibody therapy (omalizumab)

Key Points to Improve Adherence

- Use effective techniques to promote open communication
- Ask patient’s or parent’s concerns and goals for the visit
- Ask for any concerns patients or parents have about medicines (e.g. safety, impact, convenience, and cost)
- Assess patient’s and family’s perceptions of the severity level of the disease and how well it is controlled
- Assess level of family and social support
- Assess levels of stress, anxiety and depression
- Assess ability to adhere to a written asthma action plan
Patient Education:

Expert Panel Recommendation - NAEPP

- Clinicians teach patients and families the basic facts about asthma (especially the role of inflammation), need for each medicine, especially inhaled steroids, medication skills, and self-monitoring techniques (Evidence A)
- Provide all patients with a written asthma action plan:
 - Daily management
 - Recognize and handle worsening asthma
- Written action plans are particularly recommended for patients who have moderate or severe persistent asthma, a history of severe exacerbations, or poorly controlled asthma (Evidence B)
- Clinicians teach patients environmental control measures

Summary

- A significant proportion of patients with asthma have poorly controlled symptoms
- Asthma may be divided into a number of phenotypes and endotypes which is partly predicated upon inflammatory cell infiltration into the airways
- Patients with highly eosinophilic asthma are more likely to have more severe disease with recurrent exacerbations
- Current and future biologic therapies have targeted specific molecules (such as IgE and IL-5) and inhibition of these targets may reduce symptoms and exacerbations significantly
- Inhibition of IL-4 – IL-13 axis helps both atopic dermatitis and asthma

Thank you!